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1. Introduction

Various iterative methods, and multigrid in particular, are often used to solve the large linear systems

that arise from the solution of elliptic partial differential equations. This report describes an experimental

studv undertaken to investicate the use of the Crystal distributed computing facility [1] to implement two of

these methods. The two methods chosen for study are the red/black Successive Over-relaxation (SOR)

nehod and the MGRI.] multigrid algorithm.

Red/black SOR can be completely distributed to a number of machines and the algorithm itself is very

eas, to implement, hence it is a good test algorithm. However p, the rate of convergence (contraction

number) for SOR is

1- ch

where c is some constant independent of h. This rate becomes abysmally slow as h-0. This slow rate sug-

gests the use of much faster, although significantly more complicated, algorithms such as multigrid.

The MGR[iJ multigrid algorithm presents an added challenge beyond the details of the SOR algorithm.

On the one hand multigrid algorithms have rates of convergence which are bounded away from one by con-

,;tants independent of h,. In fact, for Poisson's equation in a square the asymptotic rate of convergence p(v)

of the two grid MGR[t' algorithm ,atisfies

p .r 121,
~ t~-l ~ as h -0

This is clearly superior to the rate of convergence for the SOR algorithm. On the other hand achieving this

rare of convergence requires that much more work be performed. Indeed, from a distributed computing point

of uew there is a stage of the multigrid algorithm which is performed sequentially.

One Lan reasonabl\ ask: Given the Crystal distributed computing facilitN can the completely distribut-

able SOR algorithm be made faster than the MGRIvt] algorithm? Before answering this question decisions

need to be made about the ,mplementation of both of these algorithms.

This report ha,, the following organization: Section two describes the specific differential equation and

r.,ulting linear system that was actuall, solved. Section three describes the Crystal multicomputer and the

modifications to the sequential algorithms that are nece-,sar, for their implementation. Sections four and five

sequntia aloritms ecesaryfor hei
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contain, respectively, details about the implementation and results for the SOR and for the MGRfv] methods.

Finally Section six contains some concluding remarks.

4.2



2. The Problem

The following analytic problem was chosen for teling by the two methods of solution.

Find u(x,v) such that

,p _ - 0 for (xv) , (2.1)i- ( .-z ay7

u(x,v) 0 for (x,v) -Q

and !Q - j(xY) R' 0 < x, < I j.

Although the ans.er to this problem is obvious,. u 0, when studying iterative methods for the general Pois-

-on -quation voth Dirichlet boundary conditions this homogeneous problem is the only problem which needs

t he con.idered

Ir general terms the method used to solve (2.1) is to discretize the region I) intc !!i and then to use

-nher S-)R oi mlulltid to soke the resulting linear system of equations.

The f:r-, itep !, to define l,, the grid used to approximate U. Qi; is constructed by first choosing N

i\ -dd). the number of points on a side of Il; and setting h, the mesh width, equal to N-I Then

-" i. j(x,~v.). H - ih, 'i ,i, I . ,J -- NJ.

For reasons that will become clearer later, fl;, is divided into two subsets Q? and QP (R corresponds to 'red'

points and B corresponds to 'black' points). !1 and U are defined by

Q Ojoxi.Y)1i, I 1 mod 2J

and

- (x.,v,) 11 i-j ' O mod 2

The linear system that arises from discreuzing (2.1) is, for all ( Ir ,v,) ,
S/

""n, -U, - - U - U - 4L,, -0. (2.2)

with

U,.., 0 for 0 N-. 0. N- 1.

-.

-"'?,'d , "" "" " '',"" /"". " .'."-:, -' . -''" . - -" . """. " .'.",","-"-,""."'''- -,-',,.'V.: .""" , "" . "." " ,",



The notation U,.., corresponds to U(x ,yj), etc. Since the right hand -ide of equation (2.2) is zero the -
1

' n t

term is neglected. The Nstem of linear equations (2.2) is \ritnen in matrix form as AU = 0, where U is the

,,ector of unknowns corresponding to points in III,. The solution to this system of equations, U, gives an

approximation to u(x,y), the solution of (2.1), which is an O(h 2) approximation.

S-,
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3. Brief overview of Crystal

The Crystal multicomputer is composed of a network of VAX 750 computers, each of which can com-

municate with each other. Communication between machines is accomplished by means of messages. This

report does not describe the technical details of the message transfers; [1] and [2] describe these details.

However, from an algorithm design viewpoint a number of details are important. Each message can

consist of up to 512 words (2048 bytes) of information. Once a machine sends a message it is free to proceed

with new work. On the receiving end, the messages are placed in a buffer until they are read by the receiv-

ing machine. If no message has arrived when the receiving machine is ready for one then it must wait for a

message to arrive. The ratio of transmission time of messages to computational time (multiplications etc.) is

large, thus it is to an algorithm's advantage to do as many computations as possible between sending a mes-

sage and v\aiting for a response. Otherwise the machine must busy wait for a message to arrive.

Connected to the Crystal multicomputer are a number of VAX 780 computers, referred to as hosts.

The individual machines in the network of VAX 750 computers are referred to as node machines. To run a

particular experiment the experimenter is able to communicate with the node machines from the host

machines. For example, in this application the problem size and other parameters are sent to the node

machines which then proceed to solve the problem, either by the red/black SOR algorithm or by the MGR[v]

algorithm. One particular node machine, for this application, is called the master node and the other nodes

are called slave nodes. The master node communicates with the host machines and takes care of various

bookkeeping tasks, such as timing the algorithm.

3.1. Implementation on Crystal

The basic idea used to solve the discrete problem (2.2) on Crystal is to decompose the region IlI, into a

number of smaller regions I, and to assign each region 11 , to a different processor k. The decomposition of

!1, is accomplished by choosing the number of machines to use, M, and then splitting II, into horizontal

strips each of height 1/M. Thus, M, Q , j u1 (j .. - j I iM, where

5
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Figure 1 shows, for N = 7 and M - 3, Ilk, corresponding to machine k for k 1, 2, 3.

o o 0 0 0 0 0 machine2
0 0 0 0 0 0 0

0 0 0 0 0 0 0 machine3

0 0 0 0 0 0 0

Figure 1 - fl3

Note that the number of points per processor does not have to be the same. In addition in our implementa-

ton an odd number of machines is required to insure that inter-machine boundaries do not lie on grid points.

3.2. Data Flow

One can apply the concept of data flow, see [3] for example, to study our particular implementation of

each iteration of the red/black SOR algorithm on Crystal. The data flow concept involves examining what

unknowns are actually being determined and what is the flow of data through the processors.

For our problem it is important to realize that the only true unknowns are those points lying on

machine boundaries. Once these points are fixed then the points in the interior of Ilk, for each iteration, are

determined by the iteration process itself. In the eventual solution of (2.2) these interior points are deter-

mined by the uniqueness of the solution, which is implied by the maximum principle. Therefore the object

of our parallel algorithm is to determine the values for these points. From this point of view the role of the

points lying inside each fit is solely to update these boundary values.

The task of each machine is thus to input boundary data and then to output updated values. Each

machine proceeds independently and can be viewed as a single intriction --update boundary values. These

computational processes are triggered solely by the flow of data through the network. There is no global syn-

chronizaton or control over the algorithm with the exception of starting and stopping.

I,"DA

k.b

S*'. *'* h .. " ' . ' .. ". ' . " ,, ' ,. ". "' . -" . . , . "".".".. .". ,"- " . , .". .. . . . , . , ' .



An important advantage in looking at the algorithm in this light is that the particular algorithm is

independent of the architecture it is programmed in. For example the only change necessary in moving from

the- distributed Crystal network to a shared memory machine is that rather than physically transferring boun-

dary ,alues one would only have to mark the boundary rows as being free for the next machine to update.

Of course, for each machine the interior points serve as an initial guess for the next iteration. This has

the practical implication that after the first iteration the machines are no longer interchangeable over III.

7



4. The SOR MethodI The s, ccessive over-re/aation, SOR, method has been studied by many authors, see 14, 5, 6]. The

red/black SOR method is characterized by its use of the decomposition of !Qj, into QiF and 111B. Although

red/black line SOR (SLOR) also conveniently lends itself to the Crystal architecture, red/black point SOR is

used instead since the decomposition of Ili. into Qi and into !Q is also necessary for the MGR[vJ algorithm

described in ,ection five. This allows us to compare two methods for the solution of (2.2) based on the same

basic itcrative scheme. In 17] the red/black splitting i, applied to vector processors.

The iterative scheme for our problem, for a given value of w and initial guess U0, is:

Repeat for each k, k = 1, 2, 3, - until convergence;

First update points in Q ,

For all (xy) !k., set

U,' : - W I U,'- .,1 U .-i - I- U .1 J 4 (1-w)U ..

Then update points in Q ,:

For all (xi ,v,) Q P, set

U..- ' {U , ,- U, .i - U k, 1.., 4 (1 -w)U,.,.

Note that while updating points in f, U, .,, U.. , U .. and Uk- ., are all in I1;; similarly

the reverse is true while updating points in UiP.

The algorithrr is completely described by the above description except for the choice of w. For

0 < (,, < 2 the SOR algorithm converges [4]. In addition, for our problem the optimal Uo is given by

LO opn m~aI l-Ii4

where i is the largest eigenvalue of the Jacobi iteration matrix. For general problems the value of 4I is not

known and an iteratie procedure must be used to determine UoprmaI. However, in this case it is known that

I- cos'r h.

In additon, for o' the rate of convergence of the red/black SOR method is

8
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- I - sinr. h

,, m 21 - sifn i 7

4.1. Implementation on Crystal

We have alhead\ ,ecn that the basic idea used to exploit the Crystal architecture is the concept of

domain decomposition. What is the interaction between machines in terms of the SOR iteration? What is the

best reorganization of the alporithm to minimize the effects of the decomposition?

Each point U:. that is updated using the SOR algorithm dcpends only upon its four nearest neighbors.

For points interior to a given region 12 these four neighbors lie completely within i11. However for boun-

dary points of Q9,- (either the top or the bottom row) one of the neighbors lies in either !A (points along

the top of Hp) or in c - (points along the bottom). Before each iteration machine k must thetefore receive

these boundarx values from machines - 1 and k - I. Similarly machine k must send its boundary values to

its two neighboring machines. Machines I and M have only one neighboring machine each, therefore there

is onl, one boundarx, transfer for these two machines.

In order to "'hide" the message transfers rather then sending boundar, data and then waiting idly for

the boundaries to arrike from neighboring machines, the interior points are first updated. Then, the points

along the noundarv of Hr are updated after receiving the boundary points from machines k - I and k - 1. In

this wav we hope that the time required to update the interior points will be larger than the time required for

the boundaries to arrive: otherwise we must bus, wait for them.

This procedure requires that rows in the original domain !!; that are boundaries of partitions !LQ be

represented twice. Foi example, the top row of QH. is updated b\ machine . and is also the bottom row, and

hence used a, boundar, data, in machine k - 1.

The deLoMpc'.rion of 1t, into 'red' points and 'black' points allow, machine ; to work simultaneously

with the other machines. Since the 'red' points depend upon values fixed in the 'black' points, we have

alread% seen that all the 'red' point' can be updated simultaneousl. The onl, sharing of informauon is the

'.alues of 'black' points along nia( hine boundaries. Similarly, to update the 'black' points, the 'red' points

ire held fixed, and again onl\ the point' ,ilorT: machine boundaries need to be ex, hanged.

" 4 ' ' . " " ' '()'T ' ' _ ' -', _ ' ( . - ' ' _ . .' ' . , . " -' . - , . ' . - . - . ',. .. . - ,' - , . ,,. '. ' .



VVVW L - - .. . .. N

In the case of lexicographical SOR, to update a given point, say U,,, points U, - ,, and U,.j - I must

be updated first. In particular, if the point U,., is in machine 4, all of the points in machine k -I must be

first updated before updating U,.,. Similarly the points in machines k-2, k-3, etc. must be updated before

points in machine k - I. This loses the effect of distributing the computational work among a number of

machines. Hence, a global decomposition of f£h, for example the red/black decomposition, is necessary for

the Cr\stal inplementation to succeed. In addition, since only points along machine boundaries are shared,

one complete red,'black cvcle requires only two message transfers.

On Crystal the red/black SOR iteration for machine 1, with N rows of unknowns, is:

Given to and U0 :

Repeat for k 1 1, 2, 3, until convergence:

1. Send boundary data to neighbors.

2. Compute new U ' at interior points, rows 2, N, - 1.

3. Receive boundaries from machines I - I and I - 1.

4. Compute new U. I at boundary points of /,.

5. If a complete red/black cycle has been performed, compute residual.

It is important to realize that the iterates computed by this distributed form of the red/black SOR algo-

rithm are exactly the same as the iterates computed by the serial version of the red/black SOR algorithm.

This allows us to easily compare the savings made by using the multicomputer.

A number of specific details about the programming of the algorithm are of interest. To control the

various processors corresponding to each region 11, an additional processor is used. This additional proces-

sor collects the norms of the residuals from each machine k. The total norm over 11, is computed and sent

to the host machine. In addition this machine provides each machine k with the necessary starting informa-

tion (number of points, value of w) and signals convergence to each machine k.

In order to keep the messages straight between machines, each message includes a synchronization

number from its sender. In addition, when the messages arrive at their destinations the originator of each

mesaze i, known. For example, machine k working on iteration 1 waits for messages sent from machines

10
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k-I and k-I each labeled with synchronization number 1. In the implementation of the red/black SOR

algorithm this synchronization number corresponds to the itelation count of each machine. In case messages

arrive too soon, for example from iteration A'- 1, then the messages are buffered until needed.

A final consideration concerning the implementation is worth noting. Although FORTRAN is available

on Crystal, the language Wisconsin Modula is used instead. This choice is made to facilitate the buffering of

the messages and because of Modula's superior choice of data structures. Since we are mainly interested in

speedup and efficiency for this model implementation the consideration of which language to use, while

important, does not change the conclusions based on the experimental results.

4.2. Experimental Results

The algorithm of the previous section was programmed and tested on the Crystal muiticomputer. In

order to compare the distributed version of the algorithm to the serial (single machine) version of the algo-

rithm a number of definitions are required.

Let T be the time required to run the algorithm using p machines. Then the speedup, Sp, is

The efficienc', Ep, is

Ep .

For this particular distribution of the work per iteration among the p machines in use, the minimum time

required to run the algorithm is so

TP

Hence, Ep satisfies

One hopes for E , to be as close to one as possible, however as we will see this is not always possible.

To measure the time required by the algorithm, the additional node which collected the norms from

each piece timed the algorithm. By using a Crystal node machine to collect the times no allowances had to be

•" "-4P
° ,n ' ' , , , -

• " b .. ' . - .o *,- -. .. .



made for other users on the system. As an additional measure to insure accuracy three runs were made for

every choice of N displayed in the tables. The deviation in time between runs was very small which supports

the result that all of the measured time was due to the computations and not due to network traffic or other

extraneous factors.

Runs were made with N equal to 15, 31, 63 and 127. This corresponds to 225, 961, 3969 and 16129

unknowns respectively. This may appear to be an unreasonable number of variables, however when using a

larger or more complicated domain Q these are realistic sized problems. In addition to varying N, the

number of processors p equaled one, three, five, seven, nine and eleven.

Tables I through IV contain the results for N = 15, 31, 63 and 127 respectively. The column labeled

maximum number of rows shows the number of rows in the largest division of 1!,. Recall that the number

of rows per machine is not required to be the same. The machine with the largest number of rows dominates

the computation so it is important to compare the results for this machine.

Number Maximum
of number of Average Speedup Efficiency

Machines Rows Time

1 15 9.55 1.00 1.00
5 7.28 1.31 0.44

5 3 6.80 1.40 0.28
7 3 6.73 1.42 0.20
9 2 6.28 1.52 0.17

11 2 6.16 1.55 0.14

Table 1 - N = 15

Number Maximum
of number of Average Speedup Efficiency

Machines Rows Time
1 31 57.41 1.00 1.00
3 11 26.51 2.17 0.72
5 7 19.49 2.95 0.59
7 5 16.07 3.57 0.51
9 4 14.33 4.01 0.45

11 3_12.68 4.53 0.41

Table 11 - N = 31

12
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Number Maximum 1
of number of A'erage Speedup Efficiency

Machines Rows Time

63 441.99 1.00 1.00
3 21 160.84 2.75 0.92
5 13 105.07 4.21 0.84
7 9 77.20 5.73 0.82
9 7 63.19 6.99 0.78

11 6 5t.34 7.85 0.71

Table III - N (J3

Number Maximum
of number of Average Speedup Efficiency

Machines Rows Time

1 127 3675.56 1.00 1.00
3 43 1281.80 2.87 0.96
5 26 790.26 4.65 0.93
7 19 587.58 6.26 0.89
9 15 471.73 7.79 0.87

11 12 385.25 9.54 0.87

Table IV - N = 127

Figure 2 contains a plot of the speedup versus number of machines, while Figure 3 displays the effi-

ciencv versus number of machines. As can readil. be seen, for large problems the results are very encourag-

ing. Indeed for N = 127 the algorithm remains over 85% efficient. This indicates that the message transfer

time is successfully dominated by the time required for computations. However, for small problems the effi-

ciency rapidly drops off, which indicates that this form of distributing the algorithm is not worthwhile for

small problems.

13
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5. The Multigrid Method

The multigrid algorithm for the solution of (2.1) has been studied by many authors, see [8, 9, 10, 11).

Multigrid is a term used to describe an iterative technique which uses auxiliary grids which usually have sig-

nificantly fewer points than the original grid. We will not attempt to describe all multigrid algorithms here,

- but rather will describe the one algorithm implemented on the Crystal multicomputer.

The algorithm chosen for implementation is known as the MGR[v] algorithm. This algorithm was first

described by Braess 112] (algorithm 2.1 in his paper) who analyzed the two grid version of what became

known as MGR[0] for the Poisson equation in a general polygonal domain. Ries, Trottenberg and Winter

[13] later analyzed the algorithm for the Poisson equation in a square for arbitrary v. Their results agree

with the result of Braess for the case v = 0. Kamowitz and Parter [14] extended the pre,,ious results for two

grids for the MGR[O case to the variable coefficient diffusion equation in a general polygonal domain. And

finally Parter [15] extended the results of Ries Trottenberg and Winter and of Braess. He proved that the

three grid rate of convergence in a general polygonal domain for MGR[0] for the variable coefficient diffu-

sion equation is the same as the rate, p _ 'O(h), for the two grid algorithm.

5.1. The MGRIv] Algorithm

In order to completely describe the MGR[v] algorithm a number of spaces, operators and parameters

need to be defined. In brief, each multigrid iteration consists of a small number of smoothing iterations, the

transfer of the residual to a coarser grid, the solution of a related system of equations to compute the "coarse

grid correction" and the updating of the smoothed values in the original, fine, grid by interpolating the

coarse grid correction to the fine space. It should be noted that the multigrid algorithm itself can be used

recursively to compute the coarse grid correction; this leads to a true multigrid algorithm. Also, additional

smoothing steps can be done to the coarse grid correction while interpolating to finer grids.

First the general MGR[v] multigrid algorithm will be presented, then the details concerning each stage

of the algorithm will be described. In terms of the implementation on Crystal only a rudimentary understand-

ing of the algorithm is necessary. However the details are important in terms of the actual performance on

16



Crystal.

The MGR[I,] algorithm uses t nested grids, where t is selected in advance of running the algorithm.

The nested sequm!nce of grids is labeled Ill D 112 0 ... It, where IIi corresponds to Ili, of section 2. Associ-

ated with each grid 114 is a positive definite, symmetric operator

Lk "Ai- il.

To solve L1 Ui I f1, where L1 is the linear operator defined in equation (2.2) and f1 is 0 for our par-

ticular problem the following algorithm is used.

Set k 1, U, initial guess.

Algorithm MG(L,, Ut, ft, k);
Lk given positive definite symmetric operator,
Ut given initial guess, returns value at next iteration,
ft right hand side,
, grid layer)

(I) Srnooth. Perform v iterations of odd/even Gauss-Seidel relaxation on the problem Lk U, fk followed

by one odd sweep. Store the results of this step in O..

(2) Compute the Residual r:

Set r4: ft - Lk 01.

Note that at the odd poinLs rt - 0.

(3) Resiric the residual r. to 51,. 1:

Set fi, : rr

(4) Consider computing the Coarse grid correction:

Find Uk.1 such that Lt-,Lk. I 1k-f .

If k - I -t solve directly (i.e. return U, - L, f ).

Otherwise, set U - 1 : 0 and return MG(Lk. I,Uk . I ,fk- I)

(5) Interpolate and update L

Set Uk U1 - It 1 1 U,.

17

' , .. . .



(6) Return Uk, exit algorithm.

In the above description of algorithm MG(LkUkfk,k) the details of the operators Lk, I1 and !kj,

were deliberately left out. Indeed, with the exception of III which corresponds to 11h, the spaces ilk,

k = 2, 3, t have not yet been defined.

For clarity only the particulars for the two grid algorithm will be described fully. The details for the

full r grid algorithm extend readily from the two grid description.

5.1.1. Additional Details of the MGRit'j Algorithm

Coarse Grid Spaces

Given N 1, recall the definition of It,

l - , (x,,v,) E 1 x, = ih, yj = jh 1 I i,j - NI}.

Then the coarse grid spaces Qt, 1 3, 5, - correspond to setting

Niew :=2' -" ' N,-- I

I
and computing it,: with ht now equal to N--T The coarse grid spaces III, 1 2, 4, correspond to

the "black" points of I.

Communication between Spaces

The interpolation operator I& I is constructed as follows:

(1k- ' U),,.: U,,, if the point (x,,y.,)( Ilk

and for (x,vy) . Ilk k fl, 1 we requ;re

*LA (i- I U) 0. (5.1)

Note that (5.1) results in an explicit equation for each point (x,,v, ) Il I I lk. I.

For the restriction operator 'k 1 we set

(5.2)
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In step 3 of Algorithm MG applying the operator Ik t o the residual reduces to dividing the residual by 2 on

points of lkq!h.l- I

Coarse Grid Operators

As is well known [11] the "ideal" choice for Lk, 1 is

I L, I - _ 1.

With this choice of Lk- I for the coarse grid operator the two grid MGR[r] algorithm converges in one step!

However, L&,. is a nine point operator as a straightforward calculation shows. In order to continue doing

odd/even relaxation on each of the coarser grid layers we require Lk- I to be a five point operator.

More specifically, the stencil for LA (k odd) is of the form

0

L 0 0 -0
k l/ \

k + I El E

Cl 0

For the MGRIv] algorithm we take Lk- I to be the "nearest" five points in the stencil for A-. 1. E.g., the

stencil for Lk I 1 (k odd) is

\ /

L Elk+l El El

For k even, Lk I corresponds to L;, , where h' 2 h. It should be noted that this choice of Lk. for even

numbered grid layers results in the rotated grids characteristic of the MGR[v] algorithm.

19
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5.2. Implementing the MGRjI'j Algorithm on Crystal

The MGR[t,] algorithm of Section 5.1 was implemented on the Crystal multicomputer. Each grid

Ik, k = 1,2, - ,z is partitioned among p processors, just as for the red/black SOR algorithm of section 3.

Steps 1-3 and 5 of algorithm MG are local steps, while step 4 is a global step. By a local step we mean a step

of the algorithm where updating any particular point requires only the values of the four nearest neighboring

, points. The coarse solve on 11,, in step 4, is a global step since the values of the unknowns throughout all of

Qt: are required before the coarse grid correction can be computed. The purpose of this experimental study

on the Crystal multicomputer is to determine whether there is any combination of number of grid layers and

*- number of smoothing iterations (v) for which the distributed portions of the algorithm effectively mask the

deleterious effect of the global solution step.

As the number of grid layers increases, one hopes that the effect of the global solution step on the effi-

ciency of the distributed algorithm should decrease. However, as we shall see, as the number of grid layers

increases, the amount of work per grid layer decreases across all machines, and eventually there is a drop off

in the efficienc, of diqributing the local steps across a)) the machines. For example, if the coarsest grid, -t,

has only one point on it, then the global solution step can be accomplished in one arithmetic operation.

Unfortunately, the local operations on Q, are divided among the p processors in use, which means in this

case that p - I processors are idle. The tables and graphs following this section illustrate this effect.

The details of the implementation of the local steps (smoothing, computing the residual, restricting to

coarser grids and interpolating to finer grids) are similar to the implementation of the red/black SOR algo-

rithm. That is, send boundary data, update interior sections, receive boundaries from neighbors and then

update the boundary values. These local steps are repeated for each of the i grid layers in use. Unfor-

tunately as the number of grid layers increases, the number of points per grid layer decreases, and eventually

the communication time for each step of the algorithm on these coarser grids dominates the computational

time.

In addition to the local steps of the algorithm the coarse grid correction of step 4, on the coarsest grid,

requires knowledge of the remaining unknowns in all of Q. These unknowns are distributed among all p
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*, processors in use. For this step each machine sends its unknowns to an additional, dedicated, node. This

,raster node collects the unknowns from each of the s/ave nodes. These slave nodes correspond to the nodes

used by the red/black SOR algorithm and perform the local operations. Once each slave node has sent its

unknowns to this dedicated machine the coarse grid correction is computed using Gaussian elimination. The

results of the coarse grid correction computed by the master node are then redistributed to each slave machine

and the algorithm continues.

Of coarse a more easily parallelizable algorithm, such as red/black SOR could have been used to solve

the coarse grid problem. This would have increased the observed efficiency of the experimental study. How-

ever, the cost would have been a slower running algorithm since for small sized problems (such as the coarse

grid correctipn when using a fair number of grids) gaussian elimination is faster. The question of what tech-

nique to use to solve the coarse grid equation requires further study.

The coarse grid correction step results in the most serious bottleneck of the distributed version of the

algorithm. During this step each node must remain idle while the coarse grid correction is computed. If the

number of points in It is large (e.g. if t = 2 or 3 for example), then this step dominates the computational

time of the algorithm. However, for the special case when the coarsest grid contains only one point, this

transfer of unknowns to the master node is eliminated. For this special case the one node containing the

coarse grid (with only one point in it) computes the coarse grid correction itself.

In addition to the bottleneck resulting from the coarse grid correction, there is another load balancing

problem inherent in implementing the MGRIv] algorithm on Crystal. As the grids get coarser eventually

there are more machines in use than there are rows in the coarser grids. This results in the situation where

some of the machines have no work to do and hence must sit idle for some portion of the algorithm. From a

practical programming point of view this results in the added complication of keeping the machines synchron-

ized throughout the iteration.

5.3. Experimental Results

The MGRNvj algorithm as previously described was implemented and tested on the Crystal multicom-

puter. Tests were made with N - 15, 31, 63 and 127 and with v equal to 0, 1 and 2. The number of
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processors p used to perform steps 1-3 and 5 of algorithm MG was equal to 1, 3, 5, 7, 9 and 11. With the

exception of the case p - I and the case where ! has one point in it one additional processor was used to

compute the coarse grid correction. Thus, the total number of processors used when 11, had more than one

point in it equaled 1, 4, 6, 8, 10 and 12. When Al, had .only one point, the number of processors used

equaled 1, 3, 5, 7, 9 and 11. Unfortunately due to physical constraints on the amount of memory in the

node machines some combinations of the above parameters could not be tested and these cases are noted in

the tables found in the appendix. Also, the single machine tests with N 127 were run on a lightly loaded

VAX 750 (the same type of VAX as a node machine) running UNIX By way of comparison a few runs

were made with N-63 on both the VAX running UNIX and on a node machine. The times from both

machines agreed to within a fex seconds.

The purpose of our experimental study on the Crystal architecture is to determine what the optimal

choice, if indeed there is one, of p and t- are for a particular size problem. To gain insight into this question

it is worthwhile to look at both the observed rate of convergence and the distribution of computational work

between the easily distributed steps of the algorithm and the coarse solve step.

The appendix contains the full set of observed CP. times and efficiencies for all the test problems. For

expository simplicity only the case N = 63 will be disct.-sed in this section. This case contains the full range

of the parameters r and number of grids and is represer ative of the other sized problems.

Figure 1 displays the observed rate of convergenct for N = b3 and for v = 0, 1 and 2. Note that for 2

and 3 grids the observed rate of convergence is indeed t unded above by the predicted rate of

12i 21
2

However, for i, = I and 2 there is very little chanE in the rate of convergence as the number of grids

increases. This is in some ways counter-intuitive and requires further theoretical investigation.

After observing the rate of convergence for each test case a crude count of the computational work of

th alcorithm was made. Since only a rough estimate of the work is of interest, I "work unit" was assigned

to each unknown at each step of the algorithm. For example, with P? points on a grid, r "work units" were

counted during the smoothing step rather than 5n floating point operations which is formall- more correct for
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one iteration of Gauss-Seidel smoothing. The computational work required for convergence for each sized

problem is proportional to the size of the problem.

Figure 2 displays a graph of the total computational work for N = 63 and figure 3 displays a graph of

the ratio of work for the coarse solve step to the total computational work. Noice that the amount of work

being done in the coarse solve step falls off rapidly.

Figures 4-6 display graphs of the observed efficiency for v = 0, 1 and 2. Each line corresponds to a

different number of grid layers. The bottom line, representing the least efficient case displays the observed

efficiency for 2 grids, while the bold line displays the observed efficiency for the special case where 11, con-

tains only one point. Recall that in this case the master node does no work, so the number of processors used

is Nimply the number used for steps 1-3 and 5 of the algorithm.

As the number of grids used increases, the efficiency coalesces. This is not surprising since beyond

using a small number of grid layers there is not much difference in the amount cf work being performed with

respect to the number of grids used (see figure 2).

Unfortunately from a distributed algorithm point of view as the number of machines increases the effi-

ciency drops off steadily. This particular implementation of the MGRItv algorithm is caught in the bind of

either having too much work to do solving the coarse grid equations or having too little work to do on the

coarser grids while smoothing, computing the residual, etc. In addition, having to wait idly for the coarse

grid equations to be computed is another limiting factor in terms of increasing the efficiency of the algorithm.

In the special case where lb has one point, this problem is somewhat alleviated, as can be seen in figures 3-

5. Yet, as the number of machines increases, even in this case the amount of work remaining to be distri-

buted among the processors is too small to effectively use them all efficiently.
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Observed rate of conv'ergence, N = 63
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Total Work x 100, 000 -N 63
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Percent Of Work Done In Coarse Solve - N =63
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Efficiency, N = 63, v-o0
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Efficiency, N 63, '
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Efficiency, N =63, v = 2
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6. Concluding remarks

Two approaches were presented for solving problem (2.2). The first approach, red/black SOR, was

easy to implement on the Crystal architecture and the experimental results in terms of the observed efficiency

for this algorithm were very encouraging.

The second approach, the MGR[v] algorithm, was much more difficult to implement on the Crystal

architecture. Alas, this particular implementation did not succeed in terms of high efficiency. Indeed this

lack of high efficiency appears to be inherent in the algorithm itself.

There is one important saving grace in the MGR[v] algorithm. While it might not lend itself to a distri-

buted implementation, even the serial version is much faster than the red/black SOR algorithm. With v = 1,

and the appropriate number of grids (depending upon N), the MGR[v] algorithm was up to seventeen times

faster than the serial version of the red/black SOR algorithm. In practical terms, this means that for a 100%

efficient parallel implementation of the red/black SOR algorithm to be competitive with the MGR[v] algorithm

at least seventeen machines must be used for every one machine used for the MGRj1'] algorithm.

6.1. Suggestions for further work.

A n.-.mber of questions for further research have been opened by this study. The first question is what

happens - asynchronous smoothing is used? How much degradation in the rate of convergence of the

red/black 5OR and the MGR[v] algorithms, if any, will there be? What kind of theoretical convergence

results ca- be expected? This approach has been looked at by a number of people, see I1, 17]; however no

clear ansver has emerged.

Ancrner question that would perhaps improve the efficiency of the MGR[v] algorithm is: Is there some

way to wo-k on more than one grid layer at a time? For instance, perhaps by staggering the iterations among

the grid levels each machine could work on a different grid layer, or perhaps even on more than one level.

This idea has been investigated by Greenbaum 118]. Alternatively, is there some way for some of the idle

machines to perform useful work while waiting for the solution of the coarse grid equations?

,3.
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Finally, is it worthwhile to use a parallel technique for the solution on the coarsest grid? As stated ear-

her, this would increase the efficiency of the algorithm while perhaps resulting in some overall slowdown in

the time required to converge, at least for the serial version.
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Appendix

Tables 1-4 display the observed rate of convergence and the number of iterations required for each test

problem. In tables 5-9, a-c can be found the observed CPU time for each test problem. 5a corresponds to N

= 15, v = 0, 5b corresponds to N = 15, v = 1, etc. The efficiency for each test case is displayed in tables

9-12, a-c. Finally, table 13 contains the observed efficiency for the special case where f1t contains one point.

Observed rate of convergence / Number of iterations

Number
of V =0 i, = 1 v=2

grids
2 .4628 / 10 .06154 / 3 .03228/ 3
3 .4639 / 10 .06221 I 3 .03277/ 3
4 .5964 / 13 .06396 / 4 .03357 / 3
5 .5984/ 12 .06133 /4 .03402/3
6 .6633 / 15 .06133 / 4 .03409 / 3
7 .6474 / 13 .06086 /' 4 .03412 / 3

Table 1- N = 15

Observed rate of convergence / Number of iterations

Number
of v=0 1, = 1 v=2

grids

2 .4585 / 9 .06582 / 3 .03546 / 3
3 .4591 / 9 .06583 / 3 .03564 / 3
4 .5909 / 12 .06667 / 3 .03641 / 3
5 .5931 / 12 .06585 / 3 .03645 / 3
6 .6950 / 15 .06513 / 3 .03653 / 3
7 .6971 / 15 .06483 / 3 .03685 / 3
8 .7457/ 18 .06483/ 3 .03685 ' 3
9 .7308 / 16 .06493 / 3 .03688 / 3

Table 2 - N = 31

32



Observed rate of convergence / Number of iterations

Number
of =0 =1 v=2

grids

2 .4583 / 9 .06711 / 3 .03656 / 3
3 .4586 / 9 .06708 / 3 .03660 / 3
4 .5879/ l .06791 / 3 .03741 / 3
5 .5889 / 11 .06757 / 3 .03743 / 3
6 .b912 / 14 .06661 / 3 .03750 / 3
7 .6920/ 14 .06649/ 3 .03757/ 3
8 .7619 / 17 .06647 / 3 .03762 / 3
9 .7590 / 16 .06648 / 3 .03769 / 3

10 .7980 / 19 .06648 / 3 .03769/ 3
I1 .7798 / 17 .06651 / 3 .03770 / 3

Table 3 - N = 63

Observed rate of convergence / N umber of iterations

Number
of , =0 1'=l v=2

grids

2 na1  na na
3 na na na
4 .5879 / 11 .06844 / 3 .03781 / 3
5 .5884 / 11 .06828J3 .03782/3
6 .6887 / 13 .06723 / 3 .03790/ 3
7 .6890 / 13 .06718 / 3 .03793 / 3
8 .7590/ 16 .06712 / 3 .03799 / 3
9 .7587 / 16 .06713 / 3 .03801 / 3

10 .8049 / 18 .06716 / 3 .03803 / 3
11 .7993 / 17 .06717 /3 .03805/ 3
12 .8301 / 17 .06717 / 3 .03805 / 3
13 .8123 / 18 .06718 / 3 .03805 / 3

Table4- N = 127

na mean\ that this particular run could not be performed; usually due to size constraints.
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Observed soludon time - N = 15
q , 0

Number 1 3 5 7 9 11
of machine machines machines machines machines machines

Grids

2 6.37 5.08 4.63 4.75 4.78 4.82
3 7.09 5.99 4.55 4.52 4.65 4.32
4 9.41 7.26 6.57 6.54 6.48 6.30
5 9.15 7.79 6.59 6.61 6.42 6.22
6 11.64 10.76 9.58 9.55 9.26 9.14
7 10.29 9.88 8.85 8.78 8.51 8.47

Table 5a

Observed solution time - N = 15
V=1

Number 1 3 5 7 9 11
of machine machines machines machines machines machines

Grids

2 2.69 2.10 1.97 2.03 2.07 2.10
3 2.89 2.07 1.88 1.87 1.89 1.79
4 3.85 3.19 2.89 2.87 2.87 2.81
5 4.05 3.75 2.90 3.24 3.20 3.25
6 4.13 4.26 3.85 3.80 3.79 3.72
7 4.21 4.60 4.19 4.14 4.11 4.10

Table 5b

Observed solution time - N = 15
v=2

Number 1 3 5 7 11
of machine machines machines machines machines machines

Grids -___
2 3.00 2.26 2.16 2.19 2.21 2.24
3 3.43 2.55 2.31 2.27 2 26 2.20
4 3.54 3.15 2.81 2.76 2.76 2.71
5 3.74 3.66 2.81 3 20 3.19 3.15

3.82 4. 19 3.84 3.79 3.78 3.72
7 3.89 4.59 4.22 4.22 j 4.16 4.14

Table 5c
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Observed solution time - N 31
t, 0

Number 1 3 5 7 9 11
of machine machines machines machines machines machines

Grids

2 34.3 25.8 24.0 23.1 22.8 22.5
3 30.9 18.1 14.4 14.2 13.6 13.2
4 36.5 18.1 14.0 12.4 11.6 10.7
5 37.4 18.7 14.2 12.5 11.5 10.4
6 46.9 24.4 18.7 16.4 15.2 13.8
7 47.5 25.4 19.5 17.1 15.7 14.4
8 57.2 31.9 25.0 22.2 20.3 19.0

9 51.1 29.0 22.8 20.2 18.6 17.4

Table 6a

Observed solution time - N 31
V = 1

Number 1 3 5 7 9 11
of machine machines machines machines machines machines

Grids

2 17.8 13.9 18.2 12.9 12.7 12.7
3 14.8 8.6 7.6 7.1 6.9 6.8

4 12.4 b.1 4.7 4.2 3.9 3.6

5 12.6 6.6 4.8 4.4 4.1 3.7
6 12.6 6.9 5.0 4.8 4.5 4.1
7 12.8 7.4 5.4 5.1 4.7 4.4

8 12.8 7.6 6.1 5.5 5.1 4.8
9 12.9 7.9 6.4 5.7 5.3 5.1

Table 6b

Observed solution time - N = 31
v=2

N umber 1 3 5 7 9 11
of machine machines machines machines machines machines

Grids

2 [ 19.1 14.3 13.4 13.1 12.9 12.9

2 17.0 9.4 8.2 7.6 7.3 7.3
4 15.0 7.6 5.8 5.1 4.7 4.4
5 15.4 8.1 5.8 5.6 5.1 4.8

6 15.5 8.7 6.4 6.1 5.6 5.3
7 !5.7 9.2 6.9 6.6 6.1 5.7
8 15.8 9.9 7.9 7.2 6.7 6.3
9 15.9 ]0.2 8.4 7.5 7.1 6.7

Table 6c
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Observed solution time - N 63
,, 0

Number 1 3 5 7 9 11
of machine machines machines machines machines machines

Grids

2 259.3 na 211.9 208.2 206.3 207.8
3 182.8 122.2 111.9 106.5 103.8 103.4
4 147.3 66.5 51.6 44.2 40.3 38.7

5 144.1 56.2 42.0 34.2 30.1 28.2
6 178.6 69.7 48.0 37.6 32.1 29.2
7 179.7 70.3 48.0 37.8 32.3 29.4
8 218.1 86.5 59.5 46.8 40.1 36.3

9 206.0 82.7 57.1 44.7 38.2 35.2
10 244.6 99.5 69.3 54.8 47.0 43.0
11 219.3 89.9 62.7 49.7 42.8 39.2

Table 7a

Observed solution time - N 63

Number 1 3 5 7 9 11
of machine machines machines machines machines machines

Grids
2 162.5 na 141.0 139.7 139.0 140.9
3 102.6 74.0 69.9 67.8 66.8 67.4
4 56.9 25.1 20.6 18.3 17.1 16.8
5 53.8 20.8 15.0 12.7 11.3 10.8

6 51.5 20.3 15.0 11.1 9.5 8.7
7 51.7 20.7 14.0 11.3 9.7 8.9
8 51.7 21.1 14.4 11.7 10.1 9.2
9 51.8 21 4 14.7 12.0 10.4 9.5

10 51.9 21.8 15.3 12.5 10.8 9.9

11 52.0 22.2 15.6 12.6 11.0 10.3

Table 7b
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Observed solution time - N = 63
v -2

Number' 1 3 5 7 9 11
of machine machines machines machines machines machines

Grids
2 167.7 na 142.0 140.5 140.0 141.4
3 111.5 76.3 71.4 69.0 67.9 68.3
4 67.1 27.7 22.4 19.8 18.4 17.9
5 68.0 25.4 17.9 14.3 12.8 12.2
6 63.0 25.3 17.8 13.9 11.9 10.9
7 63.4 25.9 17.6 14.3 12.4 11.3
8 b3.5 26.4 18.0 14.9 12.9 11.9
9 63.7 27.0 18.5 15.3 13.2 12.3

10 63.8 27.5 19.3 15.8 13.8 12.8
11 63.9 27.9 19.9 16.3 14.2 13.5

Table 7c

Observed solution time - N = 127
I-0

Number 1 3 5 7 9 11
of machine machines machines machines machines machines

Grids __ ________
na na na na na na

3na na na na na na
4 781 0 na 324.4 296.8 281.9 271.3

5 697.3 na 214.7 185.3 169.2 158.2
732.1 na 164.5 129.4 109.3 95.8

7 730.4 na 156.7 119.7 98.7 84.3
8 890.8 na 188.7 143.5 117.1 99.2
9 890.2 na 188.8 143.8 117.4 99.1

10 1004.3 na na na 132.9 112.6
11 953.2 na na na 126.1 106.8
12 1059.3 na na na na 121.2
S13 1007.9 na na na na 115.5

Table 8a
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Observed solution time - N = 127
v=1

Number 1 3 5 7 9 11
of machine machines machines machines machines machines

Grids

2 na na na na na na
3 na na na na na na
4 338.8 na 168.4 160.0 155.3 152.3
5 269.2 na 97.0 88.1 83.1 79.8
6 221.5 na 49.5 38.8 33.6 30.3
7 218.2 na 48.6 37.2 30.6 26.1
8 215.0 na 48.0 36.6 30.0 25.5
9 215.5 na 48.3 37.2 30.2 25.7

10 215.4 na na na 30.5 26.1
11 215.6 na na na 30.8 25.8
12 218.2 na na na na 26.8
13 221.0 na na na na 27.0

Table 8b

Observed solution time - N = 127
v=2

Number 1 3 5 7 9 11
of machine machines machines machines machines machines

Grids

2 na na na na na na
na na na na na na

4 380.2 na 174.7 165.2 159.2 155.7
5 318.1 na 104.2 93.5 87.4 83.4
b 270.2 na 60.4 46.7 38.6 34.0
7 268.3 na 59.9 45.7 37.5 32.3

8 266.1 na 59.6 45.2 37 2 31.9
9 267.1 na 60.1 45.8 37-9 32.2
10 267.6 na na na 38.1 32.7
11 268.2 na na na 38.6 33.2
12 270.0 na na na na 33.1

13 270.3 na na na na 34.1

Table 8c
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-Ep-N = 15
0

Number 1 4 6 1 8 10 12
of machine machines machines machines machines machines

Grids

2 1.0 .32 .23 .17 .14 .11
3 1.0 .29 .26 .19 .15 .14
4 1.0 .32 .24 .18 .14 .13
5 1.0 .29 .23 .18 .14 .12

6 1.0 .27 .20 .15 j .13 .11

Table 9 a

E- N= 15

Number 1 4 6 8 10 12
of machine machines machines machines machines machines

Grids
2 1.0 .32 .23 .17 .13 .11

1.0 .35 .26 .19.15 .14
4 1.0 .30 .23 .17 .14 .11

5 1.0 .27 .23 .16 .13 .10

6 1.0 .24 .18 .14 .11 .09

Table 9b

E- -N = 15
v=2

Number 1 4 6 8 10 12
of machine machines machines machines machines machines

Grids

2 1.0 .33 .23 .18 .14 .11

3 1.0 .34 .25 .19 .15 .13
4 1.0 .28 .21 .16 .13 .11
5 1.0 .26 .23 .15 .12 .10

_ 1.0 .23 .17 .12 .10 .08

Table 9c
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Ep- N =31
V=O

Number 1 4 6 8 10 12
of machine machines machines machines machines machines

Grids
2 1.0 .33 .24 .18 .15 .13
3 1.0 .43 .36 .27 .23 .19
4 1.0 .50 .43 .37 .32 .28
5 1.0 .50 .44 .38 .37 .30
6 1.0 .48 .42 .36 .31 .28
7 1.0 .47 .41 .35 .31 .28
8 1.0 .45 .38 .32 .28 .25

Table 10a

Ep- N =31
1,'= 1

Number 1 4 6 8 10 12
of machine machines machines machines machines machines

Grids

2 1.0 .32 .17 .18 .14 .12
3 1.0 .43 .33 .26 .22 .18
4 1.0 .51 .43 .37 .32 .28
5 1.0 .48 .44 .36 .31 .28
6 1.0 .46 .42 .33 .28 .26
7 1.0 .44 .39 .32 .27 .24
8 1.0 .42 .35 .29 .25 .22

Table 10b

Ep-N --31
v=2

Number 1 4 b 8 10 12
of machine machines machines machines machines machines

Grids

2 1.0 -34 .24 .18 .14 .12
3 1.0 .45 .34 .28 .23 .19
4 1.0 .50 .43 .37 .32 .28
5 1.0 .47 .44 .34 .31 .27
6 1.0 .44 .40 .32 .28 .25
7 1.0 .43 .38 .30 .26 .23
8 1.0 .40 .33 .27 .23 .21

Table IOc
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E- N = 63

Number 1 4 6 8 T 10 12

of machine machines machines machines machines machines

Grids
2 1.0 na .20 .16 .13 .10

3 1.0 .38 .28 .22 .18 .15

4 1.0 .56 .48 .42 .37 .32

5 1.0 .64 .58 .53 .48 .42

1.0 .64 .62 .60 .56 .51

7 1.0 .64 .63 .60 .56 .51

8 1.0 .64 .61 .59 .54 .50

Q 1.0 .62 .60 .58 .54 .49

10 1.0 .62 .59 .56 .52 .48

Table Ila

Ep- N = 63
V=

Number 1 4 6 8 10 12

of machine machines machines machines machines machines

Grids

2 1.0 na .19 .15 .12 .09

3 1.0 .35 .24 .19 .15 .13

4 1.0 .57 .46 .39 .33 .28

5 1.0 .65 .60 .53 .48 .41

6 1.0 .64 .58 .58 .54 .50

7 1.0 .62 .62 .57 .53 .49

8 1.0 .62 .60 .55 .51 .47

9 1.0 .61 .58 .54 .50 .46

10 1.0 .59 .57 .52 .48 .44

Table 1 lb
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Ep-N =63

Number 1 4 6 8 10 12

of machine machines machines machines machines machines
Grids

2 1.0 na .20 .15 .12 .10
3 1.0 .37 .26 .20 .16 .14
4 1.0 .61 .50 .42 .37 .31
5 1.0 .67 .63 .60 .53 .49
6 1.0 .62 .59 .57 .53 .49
7 1.0 .62 .60 .55 .51 .47
8 1.0 .60 .59 .53 .50 .45

9 1.0 .59 .58 .52 .49 .43
10 1.0 .58 .55 .51 .46 .41

Table lIc

Ep-N = 127
V=O

Number 1 4 6 8 10 12
of machine machines machines machines machines machines

Grids

2 na na na na na na
3 na na na na na na
4 1.0 na .40 .33 .28 .24
5 1.0 na .54 .47 .41 .37
6 1.0 na .74 .71 .67 .63
7 1.0 na 78 .76 .74 .72
8 1.0 na 78 .78 .77 .75
9 1.0 na -78 .77 .76 .75

10 1.0 na na na .76 .74

11 1.0 na na na .76 .74

12 1.0 na na na na .74

Table 12a
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Er-N = 127

Number 1 4 6 8 10 12

of machine machines machines machines machines machines
Grids

* 2 na na na na na na
3 na na na na na na
4 1.0 na .33 .26 .22 .18
5 1.0 na .47 .39 .32 .28
6 1.0 na .74 .71 .66 .61
7 1.0 na .75 .74 .71 .70
8 1.0 na .75 .74 .72 .71
9 1.0 na .74 .73 .71 .70
10 1.0 na na na .70 .69

11 1.0 na na na .70 .70
12 1.0 na na na na .68

Table 12b

Ep- N = 127
v=2

Number 1 4 6 8 10 12
of machine machines machines machines machines machines

Grids

2 na na na na na na
I na na na na na na

4 1.0 na .37 .29 .24 .20
5 1.0 na .51 .43 .36 .32

6 1.0 na .74 .73 .70 .66
7 1.0 na .75 .74 .71 .70
8 1.0 na .74 .74 .71 .70

9 1.0 na .74 .73 .70 .69
10 1.0 na na na .70 .68
I1 1.0 na na na .69 .67

12 1.0 na na na na .67

Table 12c
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Case Or1 has one point.

13 5 1 7 9 1
machine mach ines machines machines machines .machines-

___ ______ _ ________ N = 15, 7 grids._ _ _ __ _ _ _ _

0 1.0 .35 .23 .17 .13 .11
1 1.0 131 .20 .15 .11 .09

2 1.0___ .28 .18 .13 .10 .09

____ ____ _ __ ____ ____ N = 31, 9 r ids. ______

0 1.0 .59 .45 .36 .31 1 .27
1 1.0 .54 .40 .32 .27 .23
2 1.0 .52 J .38 .30 .25 j .22

_____ _____ ____ _ _____ _____ N = 63, 11 rids. _ _ __ _ _ __ _ _ __ _ _ _

0 1.0 1 8 .70 ~rd..63 .5 .51
1 1.0 .7 -67 .59 .53 .46

-2 1.0 .76 .64 j .56 .50 J .43
_____ __________ ___________ N = 127, 13 grids. _______ ______

0 1.0 na na na na .79
1 1.0 na na na na.7
2 1.0 na na na na .72

Table 13
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